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S U M M A R Y  
A new theory for the constitutive equations in Cosserat elasticity is proposed. It is based on the assumption that the 
rotation vector depending on the displacement vector should be coupled with a rotation vector independent of the 
displacement vector. This eliminates the indeterminancies in stress and couple-stress encountered earlier. 

1. Introduction 

A theory of deformation of solid bodies was first indicated by Voigt [1] in the year 1887, but 
remained unnoticed till the year 1909 when the Cosserat brothers [2] took up the topic and 
made substantive contributions to it. There was again a gap of forty-four years, and in 1953 
Oshima [3] applied this idea to the deformation of granular media. By using this theory Paria 
[4] attempted to solve the problem of propagation of Love waves in granular media in 1960. 
From this year, a host of literature followed. They are collected in the historical order in papers 
of Paria [5]. The medium to which this theory is applied is now-a-days called the Cosserat 
medium. 

The essence of the theory is to introduce the idea of the couple-stress, i.e. the moment per 
unit area over a specified surface, in addition to the previously prevalent idea of stress, i.e. 
force per unit area over this surface. 

An immediate consequence of the consideration of the couple-stress is that the stress dyadic 
is found to be not necessarily symmetric. Corresponding to two mechanical entities, namely, 
the stress dyadic and the couple-stress dyadic, there are two sets of field equations (of motion or 
equilibrium), and the connecting link between them is maintained by the anti-symmetric part 
of the non-symmetric stress dyadic. They form the field equations in Cosserat media and have 
been re-established by many subsequent authors [3, 6, 7, 8]. 

The next step in the theory is to obtain relations between the stress and couple-stress on the 
one hand and some kinematical quantities on the other hand. Such relations are called the 
constitutive equations for the medium. 

In a elastic body where the couple-stress is neglected, the constitutive equations are relations 
between stress and strain dyadics. In fact, intuition suggests that the stress (i.e., force) causes 
changes in displacement, and we actually establish relations between stress and displacement 
gradient. Thias the ultimate kinematical quantity in this case is the displacement vector, with 
the help of which the stress-strain relations are obtained. 

Now, if the couple-stress is introduced a corresponding kinematical quantity may be 
necessary. From intuition, it appears again that a moment causes changes in rotation and 
hence the couple-stress may be connected with rotation gradients. 

In mechanics of continuous media, the rotation vector is defined as half the curl of the dis- 
placement vector. Many authors [6, 7, 8, 9] have therefore considered this rotation vector as 
the second kinematical quantity corresponding to the couple-stress. But it has led to the 
difficulties that the anti-symmetric part of the stress dyadic as well as the isotropic part of the 
couple-stress dyadic remain indeterminate. These indeterminacies are perhaps due to the fact 
that the rotation vector, defined above, is not independent but depends on the displacement 
vector. 

It has therefore been suggested that [10] the rotation vector may be treated as an independent 
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kinematical entity. The physical justification of this hypothesis is that an element of a body 
can have a rotational motion even without having a translational motion. Now, by considering 
the displacement and rotational vectors as distinct entities, it is possible to establish constitutive 
equations which eliminate the indeterminacies mentioned above. But this again introduces 
certain elements of artificialities in the final definitions of the required kinematical entities, 
and also in obtaining known results as particular cases [10]. 

There is therefore a third possibility of generalizing the definition of the rotation vector to 
include both the independent element and that arising from the displacement vector. Such 
approach may be found in earlier works of Oshima [-3] and Paria [4] in connection with 
granular media. 

The aim of the present paper is to use this generalized definition of rotation to establish 
constitutive equations in Cosserat elasticity. It is found that there occur no indeterminacies, 
and the known results may be deduced directly. The field equations can be expressed in terms 
of the displacement and the independent rotation vectors. The approach is through the strain 
energy function. In section 2, we review the field equations in dyadic form. Strain energy in 
general is considered in section 3. In section 4, we justify our approach. In section 5, constitutive 
equations and field equations for isotropic Cosserat media are considered. 

2. The Field Equations 

We consider the motion of the material contained within a volume V bounded by the surface S 
with outward normal vector v. Across S there act the traction vector T~ and the couple-stress 
vector/~, and within V there act the body-force vectorf  and body-couple vector c. (We shall 
use bold-face characters to indicate a vector, and a bar to indicate a dyadic. [11]) 

If ~ is the stress dyadic and/~ is the couple-stress dyadic, then, 

�9 ~ =  v . ~ ,  ~ =  v . ~  (2.1) 

where the dot denotes the scalar product. 
Now, by the principle of balance of momentum we obtain the stress equations of motion 

dv 
V. f + pf = p -~ ,  (2.2) 

where p is the mass per unit volume, d/dt is the material time-derivative and v is the material 
velocity vector. 

Again, by the the principle of balance of moment of momentum, we get the couple-stress 
equation 

V "fi+l ;< f+pc  = 0,  (2.3) 

where l = Vr and r is the position vector of,a point. 
An alternative form of (2.3) is 

V.fi+-~• +pc = 0. (2.4) 

The equation (2.3) or (2.4)'is called the Cosserat equation. Equations (2.2) and (2.3) are the 
field equations for the Cosserat medium. 

From (2.4) it follows that if both fi and c vanish then -~ • is zero, i.e. the anti-symmetric part 
of stress ~ is zero. The stress is then symmetric. But the converse is not true, i.e. if the stress is 
symmetric and hence f• is zero, the equation (2.4) does not necessarily vanish identically. 
Moreover, if any one of fi and c is non-zero, the stress is non-symmetric. 

3. Strain Energy 

The rotation vector oJ depending upon the displacement u is defined by 

o~=�89215 u. (3.1) 
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Let ~ denote the rotation vector independent of the displacement. Then the total rotation 
vector q is given by 

q : o, + ~.  (3.2) 

If W be the strain energy of mass per unit volume, the total strain energy U is 

U = iv, WdV.  (3.3) 
~ V  

Since the body is in motion, it has also got kinetic energy. We do not consider here other types 
of energy. 

Now, by the principle of energy, the rate of change of total energy is equal to the rate of work 
done by external forces. This gives 

d f ~t ~(v.v)pdV + ~t WdV 
v 

= is('C~.v)dS+ .Is(,V.~t) d S + i v ( f v ) p d V +  fv(C'~t t )Pd~.  (3.4) 

We transform the surface integrals into volume integrals by the use of divergence theorem in 
dyadics. 

Thus, we get 

v ~ - d V  = V ' ~ + p f - p ~  t "vdV 

Using (2.2) and (2.4), and remembering that the volume V is arbitrary, we obtain 

d W _  f .Vv+f i :v  dq _ ( ] __dq (3.5) 
dt -dt 'z• dt 

Let us write 

= ~s + ~A (3.6) 

where ~s is the symmetric part and ~A is the anti-symmetric part of ~. For the symmetric part 

~s :Vv =.~s :vV 

so that 

d~ (3.7) ~s . v F  ~s : ~ ( v . +  ~v)= ~s :?7 

where ~ is the strain dyadic and we have used v = du/dt for small strain. 
For the anti-symmetric part 

.~a : VI) = --  ,.~A ]/JV 

so that 

d~ 
,~A. Vv : ,~A ; l ( V  v - I J V ) :  , ~ m .  (3.8) 

dt 

where N is the rotation dyadic. 
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From the definitions, it may be verified that  

,~A d~ de~ 
? 7  - �9 

Using (3.6), (3.7), (3.8) and (3.9) in (3.5) we obtain 

dW ~ s d O  dp ( d e )  
dt = " Z +/7 " d[ - • " Z  

where the dyadic iv is defined by 

p =  Vq 

Relation (3.10) implies 

dW = zS f l e o -  zAi d~i-t- #ijdpij 

where p~j are components of the dyadic p and we have put 

2"CA3 = "cA, 2~31 = "cA, 2ZAe = Z~. 

From (3.12) 

c~W cqW 
zs - aeij" z A = -  0r 

G. Paria 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

~W 
#o - @ i  j" (3.14) 

These relations determine the stress and couple-stress relations completely, if the form of W 
is known. 

4. Absence of Independent Rotation 

If the independent rotation ~ is not considered, the term involving ~• in (3.10) is absent. This 
implies that the anti-symmetric part of the stress dyadic remains indeterminate. Moreover, 
p simplies to 

p = Vt~. (4.1) 

We put 

/7 = rio + tip (4.2) 

where 

/7o = / ~ o i ,  #o = �89 (4.3) 

so that/7 0 and/7 ~ are the isotropic and deviatoric parts of/7. We also note the identity 

1 : ~ = i : V~o = I : �89 (V x u) = O. (4.4) 

Using (4.2), (4.3) and (4.4), we obtain 

dp =/TD d~ (4.5) 
/7 

By virtue of (4.5), the relation (3.10) becomes independent of/7o. In other words, the isotropic 
part of/7 remains indeterminate. 

The indeterminacies of the anti-symmetric part of the stress dyadic and the isotropic part 
of the couple-stress dyadic, in the absence of the independent rotation, were already encountered 
by other authors [8, 9]. 

On the other hand, if we take into account the independent rotation ~ but neglect the dep- 
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endent rotation to, as done by Palmov, [10], the indetermincies are no doubt removed, but 
the definition of the strain dyadic will have to be modified artificially. 

We therefore conclude that both types of rotation must be considered [3, 4]. 

5. Elastically Isotropie Cosserat Solid 

From (3.14) it is seen that the strain energy W depends upon the symmetric strain dyadic ~, 
the non-symmetric torsion-flexure dyadic p and the independent rotation vector ~. If we 
consider the strains to be small, we may retain only the second order terms in the expansion of 
W, neglecting higher order terms. The first order terms do not occur if the undeformed state is 
taken to be the initial state. Moreover, if the medium is elastically isotropic, the invariants 
corresponding to e, p and ~ may be used. Thus we get 

W = �89 + 2#) (el i +e22 + e33) 2 - 2#(eli  e22 +e22 e33 + e33 el l  

--el2 e 2 , -  e23 e32-  e31 el3) +-�89 q-2~ +P22 q- P33) 2 
_ _ 2 0 ~ 2 [ P l l P 2 2 d _ P 2 2 P 3 3 + P 3 3 P l l _ i ( p 1 2 q _ P 2 1 ) 2  1 2 1 --~(P23 +P32) --~(P31 +Pl3) 2] 

d-2ct3 [l(p12 --P21) 2 d-�88 --P32) 2 +1(p31 --P13)2] _1~ 1~2 q_ 2 + 2 4~,~1 ~2 ~ 2 ) .  (5.1) 

On the right-hand side of the above relation the first and second terms correspond to the first 
and second invariants of ~; the third and fourth terms correspond to the first and second in- 
variants of the symmetric part of fi and the fifth terms corresponds to the invariant of the anti- 
symmetric part of p; the last term corresponds to the invariant magnitude of the vectorr 

It can easily be verified that 

8W 
Zi js __ ~eij  --  ,~ekk ~ij  q- 2 # e i j  (5.2) 

where 6ij is the Kronecker delta. Also we have 

8W 
_ _  - -  O~l (Pl l -}-P22-+-Pa3)--}-20~2Pll  ' 

# l l -  8Pll 

OW 
- -  O~2(P12-] -p21) -bg3(P12- -P21)  , # 1 2 -  ~P12 

0W 
221-  - o~2(P12+P2x)-~3(P12-P21). (5.3) 

0P21 

Similar results for #22, #23, #32, "'" may be obtained. We introduce the symmetric and anti- 
symmetric parts of/Tij as 

S A 
#ij  = #i j  + #i j  

where 
S 1 #~j = :(#~j + #j~), 
A 1 #~j = = (#~j- &~). 

The results (5.3) then can be written as 

#sj = cq Pkk6 u + 2~2 pSi (5.4) 

#ija _-- 2~3 p~ (5.5) 

where psi and p~ are the symmetric and anti-symmetric parts of Pu" We also have 

aW 
z~ - - -  - ~ , r  (5.6) 

The equations (5.2), (5.4), (5.5), and (5.6) are the constitutive equations. There are thus six 
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elastic constants 2, #, el, ~2, 0~3 and e4. The first two are Lam6's constants. Comparing (5.2) 
and (5.4), we find that the role of cq and ez are similar to 2 and # respectively. The coefficients 
e3 and e4 are proportional factors for the anti-symmetric parts of couple-stress and stress 
respectively, as seen from (5.5) and (5.6). Using these constitutive equations, we express the 
field equation (2.2) and (2.4) as 

02u 
(2+#)V(V-'u)+#V 2 u+c~aV x ~ + p f  = p &2 , (5.7) 

+  3)v 2 {�89 • , ,+r  
• o .  (5.8) 

Equations (5.7) and (5.8) are to be solved with appropriate initial and boundary conditions. 
Illustrations of this theory will be given in subsequent papers. 
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